报告一:岳勤
报告题目:BINARY IRREDUCIBLE QUASI-CYCLIC PARITY-CHECK SUBCODES OF GOPPA CODES AND EXTENDED GOPPA CODES
报告人:岳勤 教授 南京航天航空大学
报告时间:2021年6月20日上午 8:30 - 9:30
报告地点:腾讯会议 802 648 397
主持人:李成举
报告摘要:
报告人简介:岳勤,南京航空航天大学数学系教授,博士生导师。1996年中国科学技术大学数学系博士学位,师从冯克勤教授。曾访问过意大利、韩国、香港和台湾等地。研究方向为代数数论,代数K理论,和代数编码理论研究,发表论文70余篇,其中SCI文章60多篇,其中包括:J. Reine Angew. Math., Math. Z, IEEE Trans. Inform. Theory等刊物,主持4项国家自然科学基金和2项国际合作项目,江苏省青蓝工程学科带头人。
报告二:吴严生
报告题目:Connection of p-ary t-weight linear codes to Ramanujan Cayley graphs with t+1 eigenvalues
报告人:吴严生 教授 南京邮电大学
报告时间:2021年6月20日上午 9:30 - 10:30
报告地点:腾讯会议 802 648 397
主持人:李成举
报告摘要:We characterize the connection between $p$-ary linear codes and Ramanujan Cayley graphs. We explicitly determine an equivalence between $t$-weight linear codes over the finite field $\Bbb F_p$ and Ramanujan Cayley graphs with $t+1$ eigenvalues. In particular, we get an explicit criterion on the equivalence between two-weight linear codes and Ramanujan strongly regular graphs with explicit parameters. Using this characterization, we construct several families of Ramanujan Cayley graphs with two or three eigenvalues from known linear codes with two or three weights, respectively.
报告人简介:吴严生,南京邮电大学教授。欧洲数学会《数学文摘》、美国数学会《数学评论》评论员。以第一作者或通讯作者在IEEE Transactions on Information Theory、IEEE Communications Letters、Designs Codes and Cryptography、Finite Fields and Their Applications、Discrete Applied Mathematics、Discrete Mathematics 等国际期刊上发表 SCI 论文 18 篇。 主要研究方向为代数编码理论、密码函数。
报告三:李凤伟
报告题目:The $b$-symbol weight distributions of MDS linear codes
报告人:李凤伟 教授 枣庄学院
报告时间:2021年6月20日上午 10:30 - 11:30
报告地点:腾讯会议 802 648 397
主持人:李成举
报告摘要:The 2-symbol code is also called the symbol-pair code. Symbol-pair codes are designed to protect against pair errors in symbol-pair read channels, so that individual symbols cannot be read off due to physical limitations. The relationships between the minimum Hamming distance of an error-correcting code and the minimum pair distance were established. Some of the known results for symbol-pair codes were generalized to $b$-symbol codes. Let $\mathcal C$ be a maximum distance separable (MDS) linear code over a finite field $\Bbb F_q$. In this talk, we gave another expression form of its weight distribution, and,using combinatorics,obtained its $b$-symbol weight distribution in the cases: $b=2, 3$.
报告人简介:李凤伟,枣庄学院教授,主要研究方向为代数编码。近几年来在IEEE Tran. Inform. Theory、Finite Fields and Their Applications、Designs, Codes and Cryptography、Advances in Mathematics of Communications等SCI期刊发表学术论文20篇。主持国家自然科学基金项目1项,国家自然科学基金子课题一项,省级课题1项。获得山东省高等学校优秀科研成果奖一项。