报告题目:Growth and Assembly of Advanced Shaped Perovskite Nanocrystals for Photoelectronic Applications
报告人:郑伟威 博士
主持人:陈缙泉 研究员
时间:2019-07-22 15:00
地点:理科大楼A814
主办单位:精密光谱科学与技术国家重点实验室
报告人简介:
郑伟威博士,2011年毕业于年在美国佛罗里达州立大学(Florida State University),获博士学位,博士期间从事稀磁半导体量子点的光学和磁学性质的研究。2012年至2015年,在美国埃默里大学(Emory University)从事量子点的功能化及在生物体系中的应用研究。2015年至今任职于美国雪城大学(Syracuse University)化学系。
郑伟威博士在复合纳米晶体为基础的多功能材料的合成,光电性质和催化上开展了系统地研究并做出了很多原创性成果。发表高质量SCI论文40余篇, 主要成果包括:在Mn掺杂的II-VI量子点中发现了表面载流子调制的铁磁耦合 (2011 JACS) 以及Cr掺杂的II-VI量子点中的相转化现象 (2012 JACS);首次报道了Cr掺杂的ZnSe量子点,并发现了ZnSe量子点核中存在具有尖晶石结构的ZnCr2Se4包容物 (2012 JACS);发展了一种灵敏的磁性探针,可用于检测量子点的表面、核及界面的微环境及晶格应力 (2012 Nano Lett.)。在水相体系获得了光学上最稳定的非核壳结构的量子点,并通过脂质体胶体模板实现了特定位置的选择性功能化 (2014 JACS);首次报道了掺杂离子在纳米晶的可控迁移现象(2017 JACS),并通过可控迁移精确控制材料的光学性能 (2017 ACS Nano)。开发了高效表面修饰路线以得到既有光电活性有在水相中超级稳定的无极钙钛矿量子点 (2018 Adv. Funct. Mater.)。报告人的研究曾获得美国佛罗里达州立大学最佳博士学位论文奖(2012),美国化学会ACS-PRF New Investigator Award (2019 - 2021)。
报告内容简介:
Inorganic halide perovskites are fantastic materials and have wide applications in solar cells, LEDs, photo-catalysis, and etc.
Shape control is critical and offers an efficient way to tune the properties of nanocrystals (NCs). We present the surface ligand-mediated assembly of 1 dimensional (1D) nanorods is highly effective for producing 2D nanoplatelets (NPLs) and nanosheets (NSs). The present work provides a general strategy
for rational fabrication of 2D CsPbX3 (X = Cl, Br, I) perovskite NCs without the assistance of anion exchange. The broad lateral size range of the 2D perovskite NCs from ~100 nm up to ~1 μm can provide great opportunities in practical photovoltaic applications.
For optoelectronic and photocatalytic applications of perovskite NCs in aqueous phase, TiO2 shell coated CsPbBr3 core/shell NCs were synthesized. The core/shell NCs show excellent water stability for at least 3 months,which represent the most water-stable inorganic shell passivated perovskite NCs reported to date. More importantly, the core/shell NCs exhibit increased charge separation efficiency due to the electrical conductivity of the TiO2 shell, hence leading to an improved photoelectric activity in water.