来源:统计学院

10月31日 | 周岭:Integrative Learning and Inference for distributed and streaming data

来源:统计学院发布时间:2022-10-23浏览次数:120

时  间:2022年10月31日 13:30-14:30

地  点:腾讯会议ID:599-643-036

报告人周岭  教授

主持人:唐炎林  研究员

摘   要:

The theory of statistical learning and inference for large-scale data analysis has recently attracted considerable interest. The central analytic task in the development of statistical learning and inference pertains to the method of integrating results yielded from distributed/streaming data batches. This talk introduced a communication efficient method without pooling individual datasets for unbalanced datasets, and an incremental learning algorithm for streaming datasets with correlated outcomes.

报告人简介:

周岭,2004-2010年四川大学数学学院本科和硕士,2014年西南财经大学博士,2018年美国密西根大学生物统计系博士后,2017年钟家庆数学奖获得者,周岭与合作者在数据集成、选择后推断、亚组分析、非参数理论与方法、因果推断等领域取得了一系列研究成果,在Journal of the American Statistical Association (JASA), Journal of Economics (JoE), Journal of Machine Learning Research(JMLR), Annal of Applied Statistics(AOAS), Biometrics等国际统计学、计量经济学、计算机领域期刊上发表论文20余篇。